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Abstract. In the framework of LDA+DMFT (dynamical mean field theory) approach for realistic electronic
structure calculations, a new perturbation scheme which combines the T -matrix and fluctuating exchange
approximations is presented. This method is less computationally expensive than the numerically exact
quantum Monte Carlo technique and give an adequate description of the electronic structure and exchange
interactions in magnetic metals. We present a simple expression for the exchange interactions corresponding
to the neglect of the vertex, corrections which becomes exact for the spin-wave stiffness in the local
approximation. Electronic structure, correlation effects and exchange interactions for ferromagnetic nickel
are discussed.

PACS. 71.10.-w Theories and models of many-electron systems – 71.15.-m Methods of electronic structure
calculations

1 Introduction

Electronic structure and magnetic properties of iron-group
metals have been a subject of great interest for a very
long period (for review of early theories see [1–3]). Den-
sity functional (DF) theory in the form of the local spin
density approximation (LSDA) or generalized gradient
approximation (GGA), which which forms the basis of
modern microscopic theory of solids, is faced with a se-
ries of difficulties when describing photoemission, ther-
moemission and other spectra of Fe and Ni as well as
their finite-temperature magnetic properties (see [4–8] and
Refs. therein). The electron correlation effects should be
taken into account to solve these problems. Many at-
tempts to include these effects in band structure calcula-
tions of transition metals are found in the literature [9–14].
Probably the most accurate and successful approach is the
use of the dynamical mean-filed theory (DMFT, [15,16])
in the framework of so called LDA+DMFT approach
[17,18] (for review see [19]), which adds many-body effects
as an effective quantum impurity problem. The DMFT
method has been applied to the magnetism of transition
metals in references [8,20] within the numerically exact
quantum Monte Carlo (QMC) scheme. Unfortunately, the
using of the QMC technique is very cumbersome and ex-
pensive computationally; besides, the QMC method deals
with the “truncated” two-indices interaction matrix in-
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stead of the complete four-indices one (see [20]). An al-
ternative scheme was proposed in reference [7] based on
a multiband spin-polarized generalization of the “fluctu-
ating exchange” (FLEX) approximation by Bickers and
Scalapino [21]. The original formulation of the FLEX ap-
proximation treats in an equal way both particle-hole
(PH) and particle-particle (PP) channels. However, their
roles in magnetism are completely different: the interac-
tion of electrons with spin fluctuations in PH channel leads
to the most relevant correlation effects [3] whereas PP pro-
cesses are important for the renormalizations of the effec-
tive interactions in spirit of the T -matrix approach (“lad-
der approximation”) by Galitskii [22] and Kanamori [23].
Therefore we used in reference [7] a “two-step” proce-
dure when, at first, the bare matrix vertex is replaced by
the T -matrix, and, secondly, PH channel processes with
this effective interaction are taken into account explic-
itly. Note that the first attempt to combine the T -matrix
and particle-hole correlations in relation with the prob-
lem of the magnetism of transition metals has been done
by Liebsch [9]) but in a different way (introducing the
particle-hole renormalization into the T -matrix which is
opposite in this sense to the approach of Ref. [7]).

The latter (“two-step-FLEX”) approximation gives, in
general, qualitatively stasfactory description for the Hub-
bard model [24], as well as for ferromagnetic iron iron [7];
one can assume that it is reliable enough for systems with
moderate correlations U < W/2 where U is the Hubbard
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on-site repulsion energy and W is the bandwidth. Replac-
ing the bare Coulomb interaction by the T -matrix can
be justified accurately, at least for spin-wave temperature
region, both for the Hubbard model [25] and for the s-d
exchange (spin-fermion) model [26]. However, the specific
form of the approximation used in [7] can be improved
further by taking into account the spin-dependence of the
T -matrix. Here we present the formulation of the spin-
polarized T -matrix-FLEX (SPTF) approximation and its
application to the electronic structure of ferromagnetic
nickel. It is worthwhile to stress that we use this per-
turbational approach within the framework of the DMFT
scheme which is superior to the local approximation (ne-
glecting the momentum dependence) in corresponding di-
agrams. We find a satisfactory description of correlation
effects in nickel similar to in our previous QMC calcu-
lations [8] but with an essential gain in computational
resources needed for the calculations.

2 Computational approach

We start with the general many-body Hamiltonian in the
LDA+U scheme [27]:

H = Ht +HU

Ht =
∑
λλ′σ

tλλ′c+λσcλ′σ

HU =
1
2

∑
{λi}σσ′

〈λ1λ2 |v|λ′1λ′2〉 c+λ1σc
+
λ2σ′cλ′

2σ′cλ′
1σ , (1)

where λ = im are the site number (i) and orbital (m)
quantum numbers, σ =↑, ↓ is the spin projection, c+, c
are the Fermion creation and annihilation operators, Ht

is the effective single-particle Hamiltonian from the LDA,
corrected for the double-counting of average interactions
among correlated electrons as will be described below,
and the Coulomb matrix elements are defined in the
standard way

〈12 |v| 34〉 =
∫

drdr′ψ∗
1(r)ψ∗

2 (r′)v (r − r′)ψ3(r)ψ4(r′),

(2)

where we define for briefness λ1 ≡ 1 etc. Following
reference [22] we take into account the ladder (T -matrix)
renormalization of the effective interaction:

〈
13
∣∣∣T σσ′

(iΩ)
∣∣∣ 24
〉

= 〈13 |v| 24〉 − 1
β

∑
ω

∑
5678

〈13 |v| 57〉

∗Gσ
56 (iω)Gσ′

78 (iΩ − iω)
〈
68
∣∣∣T σσ′

(iΩ)
∣∣∣ 24
〉
, (3)

where ω = (2n+ 1)πT are the Matsubara frequencies for
temperature T ≡ β−1 (n = 0,±1, ...). Further we rewrite
the perturbation theory in terms of this effective interac-
tion matrix.

At first, we take into account the “Hartree” and “Fock”
diagrams with the replacement of the bare interaction by
the T -matrix

Σ
(TH)
12,σ (iω) =

1
β

∑
Ω

∑
34σ′

〈
13
∣∣∣T σσ′

(iΩ)
∣∣∣ 24
〉
Gσ′

43 (iΩ − iω)

Σ
(TF )
12,σ (iω) = − 1

β

∑
Ω

∑
34

〈14 |T σσ (iΩ)| 32〉Gσ
34 (iΩ − iω) .

(4)

Note that Σ(TH)+ Σ(TF ) contains exactly all the second-
order contributions as can be easily seen from the cor-
responding Feynman diagrams. Now we have to consider
the contribution of particle-hole excitations to the self-
energy. Similar to [7] we will replace in the corresponding
diagrams the bare interaction by the static limit of the
T -matrix (as was already mentioned, it can be justified
by the explicit calculation of the electron and magnon
Green functions of a ferromagnet, at least, for spin-wave
temperature region [25,26]). We improve the approxima-
tion [7] by taking into account the T -matrix spin de-
pendence. When considering the particle-hole channel we
replace in the Hamiltonian (1) v → T σσ′

which is the solu-
tion of equation (3) at Ω = 0. equation (4) is exact in the
limit of low electron (or hole) density which is important
for the criterion of magnetism, e.g., in the case of nickel
with its almost completely filled d-band.

Now we rewrite the effective Hamiltonian (1) with the
replacement 〈12 |v| 34〉 by

〈
12
∣∣∣T σσ′

∣∣∣ 34
〉

in HU . To con-
sider the correlation effects due to PH channel we have
to separate density (d) and magnetic (m) channels as in
reference [21]

d12 =
1√
2

(
c+1↑c2↑ + c+1↓c2↓

)
m0

12 =
1√
2

(
c+1↑c2↑ − c+1↓c2↓

)
m+

12 = c+1↑c2↓

m−
12 = c+1↓c2↑ . (5)

Then the interaction Hamiltonian can be rewritten in the
following matrix form

HU =
1
2
Tr
(
D+ ∗ V ‖ ∗D +m+ ∗ V ⊥

m ∗m−

+m− ∗ V ⊥
m ∗m+

)
(6)

where ∗ means matrix multiplication with respect to the
pairs of orbital indices, e.g.(

V ⊥
m ∗m+

)
11′ =

∑
34

(
V ⊥

m

)
11′,22′ m

+
22′ ,

the supervector D defined as

D =
(
d,m0

)
, D+ =

(
d+

m+
0

)
,
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and the effective interactions have the following form:(
V ⊥

m

)
11′,22′ = − 〈12

∣∣T ↑↓∣∣ 2′1′〉
V ‖ =

(
V dd V dm

V md V dd

)
V dd

11′,22′ =
1
2

∑
σσ′

〈
12
∣∣∣T σσ′ ∣∣∣ 1′2′〉− 1

2

∑
σ

〈12 |T σσ| 2′1′〉

V mm
11′,22′ =

1
2

∑
σσ′

σσ′
〈
12
∣∣∣T σσ′ ∣∣∣ 1′2′〉

−1
2

∑
σ

〈12 |T σσ| 2′1′〉V dm
11′,22′ = Vmd

22′,11′

=
1
2

[ 〈
12
∣∣T ↑↑∣∣ 1′2′〉− 〈12

∣∣T ↓↓∣∣ 1′2′〉− 〈12
∣∣T ↑↓∣∣ 1′2′〉

+
〈
12
∣∣T ↓↑∣∣ 1′2′〉− 〈12

∣∣T ↑↑∣∣ 2′1′〉+
〈
12
∣∣T ↓↓∣∣ 2′1′〉 ]. (7)

To calculate the particle-hole (P-H) contribution to the
electron self-energy we first have to write the expressions
for the generalized susceptibilities, both transverse χ⊥ and
longitudinal χ‖. The corresponding expressions are the
same as in reference [7] but with another definition of the
interaction vertices. One has

χ+−(iω) =
[
1 + V ⊥

m ∗ Γ ↑↓(iω)
]−1 ∗ Γ ↑↓(iω) , (8)

where

Γ σσ′
12,34 (τ) = −Gσ

23 (τ)Gσ′
41 (−τ) (9)

is an “empty loop” susceptibility and Γ (iω) is its Fourier
transform, τ is the imaginary time. The corresponding
longitudinal susceptibility matrix has a more compli-
cated form:

χ‖(iω) =
[
1 + V ‖ ∗ χ‖

0(iω)
]−1

∗ χ‖
0(iω), (10)

and the matrix of bare longitudinal susceptibility is

χ
‖
0 =

1
2

(
Γ ↑↑ + Γ ↓↓ Γ ↑↑ − Γ ↓↓

Γ ↑↑ − Γ ↓↓ Γ ↑↑ + Γ ↓↓

)
, (11)

in the dd-, dm0-, m0d-, and m0m0-channels (d,m0 = 1, 2
in the supermatrix indices). An important feature of these
equations is the coupling of longitudinal magnetic fluc-
tuations and of density fluctuations. It is not present in
the one-band Hubbard model due to the absence of the
interaction of electrons with parallel spins. For this case
equations (8, 10) coincides with the well-known result [28].

Now we can write the particle-hole contribution to the
self-energy. Similar to reference [7] one has

Σ
(ph)
12,σ (τ) =

∑
34,σ′

W σσ′
13,42 (τ)Gσ′

34 (τ) , (12)

with the P-H fluctuation potential matrix:

W σσ′
(iω) =

[
W ↑↑ (iω) W⊥ (iω)

W⊥ (iω) W ↓↓ (iω)

]
, (13)

where the spin-dependent effective potentials are de-
fined as

W ↑↑ =
1
2
V ‖ ∗

[
χ‖ − χ

‖
0

]
∗ V ‖

W ↓↓ =
1
2
V ‖ ∗

[
χ̃‖ − χ̃

‖
0

]
∗ V ‖

W ↑↓ = V ⊥
m ∗ [χ+− − χ+−

0

] ∗ V ⊥
m

W ↓↑ = V ⊥
m ∗ [χ−+ − χ−+

0

] ∗ V ⊥
m (14)

where χ̃‖, χ̃‖
0 differ from χ‖, χ‖

0 by the replacement of
Γ ↑↑ ⇔ Γ ↓↓ in equation (11). We have subtracted the
second-order contributions since they have already been
taken into account in equation (4).

Our final expression for the self energy is

Σ = Σ(TH) +Σ(TF ) +Σ(PH). (15)

This formulation accurately takes into account accurately
spin-polaron effects because of the interaction with mag-
netic fluctuations [25,29]. The energy dependence of the
T -matrix which is important for the description of satel-
lite effects in Ni [9], contains exact second-order terms in
v and is rigorous (because of the first term) for almost
filled or almost empty bands.

The FLEX approximation can in principle be directly
applied to the crystal taking into account the momen-
tum dependence of the self-energy, which would lead to
very cumbersome calculations. To overcome this compu-
tational problem, we use as in reference [7] a local ap-
proximation to the self-energy, corresponding to combi-
nation of the SPTF approach presented above with the
DMFT theory. The latter is considered as an optimal local
approximation [15,16], therefore, this combined approach
should be essentially more accurate than simple neglecting
of momentum dependence in the corresponding diagrams
of SPTF. The formal difference is that in a “canonical”
version of FLEX-like approximations [21] the self-energy
is written as a functional of exact Green functions, in the
perturbation theory – as a functional of bare Green func-
tions, and in the DMFT – as a functional of bare Green
functions in an effective correlated medium.

The DMFT maps the many-body system onto a multi-
orbital quantum impurity, i.e. a set of local degrees of
freedom in a bath described by the Weiss field function G.
The impurity action (here c(τ) = [cmσ(τ)] is a vector of
Grassman variables) is given by:

Seff =
∫ β

0

dτ
∫ β

0

dτ ′Tr[c+(τ)G−1(τ, τ ′)c(τ ′)]

+
∫ β

0

dτHU

[
c+(τ), c(τ)

]
. (16)

It describes the spin, orbital, energy and temperature de-
pendent interactions of particular magnetic 3d-atom with
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the rest of the crystal and is used to compute the local
Greens function matrix:

Gσ(τ − τ ′) = − 1
Z

∫
D[c, c+]e−Seff c(τ)c+(τ ′) (17)

(Z is the partition function) and the impurity self energy
G−1

σ (iω) − G−1
σ (iω) = Σσ(iω).

The Weiss field function G is required to obey the self
consistency condition, which restores translational invari-
ance to the impurity model description:

Gσ(iω) =
∑
k

[
(iω + µ)1−H(k) −Σdc

σ (iω)
]−1

(18)

where µ is the chemical potential, H(k) is the LDA
Hamiltonian in an orthogonal basis. The local matrix Σdc

σ

is the sum of two terms, the impurity self energy and
a so-called “double counting” correction, Edc which is
meant to subtract the average electron-electron interac-
tions already included in the LDA Hamiltonian. For metal-
lic systems we propose the general form of dc-correction:
Σdc

σ (iω) = Σσ (iω) − 1
2TrσΣσ (0) for the non-magnetic

LDA Hamiltonian [8] and Σdc
σ (iω) = Σσ (iω) − Σσ (0)

for the magnetic LSDA Hamiltonian. This is motivated
by the fact that the static part of the correlation effects
are already well described in the density functional the-
ory. Only the d-part of the self-energy is present in our
calculations, therefore Σdc

σ = 0 for s- and p-states as well
as for non-diagonal d−s, p contributions.

In spirit of the DMFT approach we have to use the
Weiss function Gσ instead of Gσ in all expressions when
calculating the self-energy on a given site. Similar to
the one-band DMFT-perturbation scheme [30,24] we keep
the static mean-field term in the bath Green functions:
G−1

σ (iω) = G−1
σ (iω) +Σσ(iω) −Σσ (0).

3 Electronic structure of nickel

We have started from the non spin-polarized LDA or
spin-polarized LSDA band structure of nickel within the
TB-LMTO method [31] using a minimal s, p, d basis set
and used numerical orthogonalization to find the H(k)
Hamiltonian in equation (18). We take into account of the
Coulomb interactions between d-states only. The correct
parameterization of the HU part is indeed a serious prob-
lem. For example, first-principles estimations of average
Coulomb interactions (U) [13,32] lead to an unreasonably
large value of order of 5–6 eV in comparison with the value
of the U -parameter in the range of 1–2 eV for iron [13]
consistent with experiment. Semi-empirical analysis of the
appropriate value [33] gives U 
 3 eV. It is shown in refer-
ences [7,8] that an adequate description of a broad circle of
properties of Fe and Ni in the LDA+DMFT scheme is pos-
sible when choosing U 
 2−3 eV. The difficulties with an
ab initio determination of the correct value of U are con-
nected with complicated screening problems, definitions
of orthogonal orbitals in the crystal, and contributions of
the intersite interactions. In the quasi-atomic (spherical)

-10 -8 -6 -4 -2 0 2
0

1

U=3 eV LSDA+SPTF

 

Energy, eV

0

1

U=3 eV LDA+SPTF

 

0

1

U=2 eV LDA+SPTF

 

D
en

si
ty

 o
f s

ta
te

s

0

1

2

EFNi     LSDA

Fig. 1. Spin-up (full lines) and spin-down (dashed lines) den-
sity of d-states for ferromagnetic nickel in the LSDA and the
LDA+SPTF (LSDA+SPTF) calculations for different aver-
age Coulomb interaction U with J = 1 eV and temperature
T = 200 K.

approximation the full U -matrix for the d-shell is deter-
mined by the three parameters U, J and δJ or equivalently
by effective Slater integrals F 0, F 2 and F 4 [27]. For exam-
ple, U = F 0, J = (F 2 + F 4)/14 and we use the simplest
way of estimating δJ or F 4 keeping the ratio F 2/F 4 equal
to its atomic value 0.625 [27].

Note that the value of intra-atomic (Hund) exchange
interaction J is not sensitive to the screening and approx-
imately equals 1 eV in different estimations [32]; here we
have chosen J = 1 eV. For the most important parame-
ter U , which defines the bare vertex matrix (Eq. (2)), we
took the values U = 2 and 3 eV to check the dependence of
the density of states (DOS) on U . To find DOS we applied
a Pade approximant [34] for the analytical continuation
of the Greens function from the Matsubara frequencies to
the real energy axis. To find the self-consistent solution
of the SPTF equations we used 1024 Matsubara frequen-
cies and the FFT-scheme with the energy cut-off at 25 eV
and temperature around 200 K. The sum over irreducible
Brillouin zone has been made with 256 k-points.

Comparison of the LDA density of states and the
SPTF calculation with DMFT self-consistency for the
local self-energy matrix (Fig. 1) shows that the latter
does reproduce the three most important characteristic
features of correlation effects for nickel: 6 eV satellite,
30% narrowing of the d-bandwidth and 50% reduction of
exchange splittings in comparison with the LSDA band
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structure [35–38]. For U = 2 eV the position of satellite
is reproduced quite well, while for U = 3 eV it is shifted
to the lower energies. Note that the LDA+DMFT consid-
eration with the QMC solution of the effective impurity
problem gives an adequate description of the electronic
structure of Ni for the choice U = 3 eV [8]. In the SPTF
approximation for the solution of impurity problem the
choice U = 2 eV looks like the best one. The narrowing of
the d-bandwidth in our calculations is reasonable for the
both U -values. The non-magnetic LDA starting Hamilto-
nian is better than the LSDA one for correct description
of the 50% reduction of the spin-splittings in nickel, while
for magnetic LSDA Hamiltonian the the spin-splitting in
the quasiparticle DOS remains approximately the same
like in the LSDA results (Fig. 1). One can conclude that
the LDA is better starting point than the LSDA for the
account of the correlation effects; probably, it is important
that exchange and correlation effects in magnetic splitting
should be considered on an equal footing, in the same ap-
proximation. The local magnetic moment on the nickel
atom is not very sensitive to U and is equal to 0.56 µB

for U = 2 eV LDA+SPTF and 0.58 µB for U = 3 eV
LSDA+SPTF calculations.

Another important correlation effect is an essential re-
duction of the spin polarization near the Fermi level in
comparison with the LSDA calculations. This is connected
with the spin-polaron effects because of the mixing of the
spin-up and spin-down states [29]. They are taken into
account in our scheme due to presence of the off-diagonal
terms in the effective potential equation (13).

4 Exchange interactions in nickel

Calculating the variation of the thermodynamic poten-
tial with respect to small spin rotations with the use of
the “local force theorem” an effective exchange interaction
parameters can be found in the following form [20]

Jij = −TrωL

(
Σs

iG
↑
ijΣ

s
jG

↓
ji

)
(19)

where Σs
i = 1

2

(
Σ↑

i −Σ↓
i

)
. Correspondingly, the magnon

dispersion relation ωq for a ferromagnet is defined by the
formula

ωq =
4
M

[J(0) − J(q)] (20)

where M is the magnetic moment per unit cell, J(q) is
the Fourier transform of the exchange integrals defined by
equation (19). The expression for the stiffness tensor Dαβ ,

ωq = Dαβqαqβ , q → 0, (21)

reads

Dαβ = − 2
M

TrωL

∑
k

(
Σs ∂G

↑ (k)
∂kα

Σs ∂G
↓ (k)
∂kβ

)
· (22)

These results generalize the LSDA expressions of refer-
ence [39] to the case of correlated systems. One can show
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Fig. 2. Spin-wave spectrum for ferromagnetic nickel in
LDA+SPTF scheme with different U and J = 1 eV in compar-
ison with experimental magnon spectrum (Ref. [36]) in Γ − L
direction.

(see Appendix) that they can be derived using a stan-
dard diagrammatic approach under two assumptions: (i)
the locality of the self-energy Σ (which is fulfilled in the
DMFT) and (ii) the neglect of the vertex corrections. The
expression (22) for the stiffness constant turns out to be
exact in the framework of DMFT.

One should stress that it would be dangerous to jus-
tify the expressions (19, 22) by the local force theorem
since the latter can be proven only for conserving (ϕ-
derivable) approximations [20]. Unfortunately, we cannot
demonstrate the ϕ-derivability of the SPTF approxima-
tion. However, as it is shown in the Appendix, this is not
really necessary to obtain the expressions for exchange in-
tegrals and stiffness constant; it is neglecting of the vertex
corrections that is used here essentially.

We have calculated the magnon spectrum for the op-
timal choice U = 2 eV and J = 1 eV using SPTF calcu-
lations with the non-magnetic LDA as a starting point.
This is the choice of parameters which is optimal for the
description of electron energy spectrum (see the previous
section). The computational results for magnon disper-
sion are shown in Figure 2; the calculated spin-wave stiff-
ness constant for Ni is found to be D = 450 meV/A2 for
U = 2 eV in an excellent agreement with the experimental
value of 455 meV/A2 [40]. It is interesting to note that the
spin-wave spectrum for larger values of local Coulomb in-
teractions: for U = 3 eV the exchange interactions become
becomes softer (Fig. 2) in contrast with naive perturba-
tive arguments. Generally, U should be compared with the
width of the DOS peak near the Fermi level rather than
with the total bandwidth [4] and, therefore, U = 2− 3 eV
corresponds already to the strongly correlated case. The



14 The European Physical Journal B

simple approximation equation (19) for exchange interac-
tions does not allow us to investigate the optical mode in
magnon spectrum of nickel [43].

5 Conclusions

Here we have presented the results of new SPTF ap-
proximation in the framework of first-principle dynamical
mean field theory (LDA+DMFT) for magnetic transition
metals. This approximation combining the T -matrix and
FLEX schemes gives a satisfactory description of both
electronic and magnon spectra of Ni. In contrast with
QMC method for the solution of effective impurity prob-
lem, this approach, being less rigorous, is not so time-
and resource-consuming and allows to work with the most
general rotationally invariant form of the Coulomb on-site
interaction.

The work was supported by the Netherlands Organization for
Scientific Research (NWO project 047-008-16) and partially
supported by Russian Science Support Foundation.

Appendix: Exchange interactions and vertex
corrections

In order to elucidate the approximation behind the expres-
sion for the exchange parameters (Eq. (19)), we consider
the energy of a spiral magnetic configuration with the rigid
rotation of the spinor-electron operators on site i by the
polar angles θi and ϕi:

cim → U (θi, ϕi) cim

where

U (θ, ϕ) =

(
cos θ/2 sin θ/2 exp (−iϕ)

− sin θ/2 exp (iϕ) cos θ/2

)
,

assuming that θi = const. and ϕi = qRi where Ri is the
site lattice vector. Since we take into account only on-site
correlation effects the interaction term in the Hamiltonian
is invariant under that transformation, and the change of
the Hamiltonian is

δH =
∑
ij

TrLσ

[
tijc

+
i

(
U+

i Uj − 1
)
cj
]

= δ1H + δ2H

δ1H = sin2 θ

2

∑
k

TrLσ

[
(t (k+q) − t (k)) c+k ck

]
δ2H =

1
2

sin θ
∑
ij

TrL

[
tijc

+
i↓cj↑

]
× (exp (iqRi) − exp

(
iqRj

))
. (23)

Consider further the case of small θ, we can calculate
the variation of the total energy to lowest order in θ which

corresponds to the first order in δ1H and the second order
in δ2H :

δE =
θ2

4
TrL

∑
k

[t(k + q) − t(k)]{nk

+ Trω[γ(k, q)G↓(k + q)[t(k + q) − t(k)]G↑(k)]}, (24)

where nk = TrLσ

〈
c+k ck

〉
, q, k are four-vectors with compo-

nent (q, 0) and (k, iω), γ is the three-leg vertex. Our main
approximation is to neglect the vertex corrections (γ = 1).
In this case the previous equation takes the following form:

δE =
θ2

4
TrLω

∑
k

[t(k + q) − t(k)]

∗G↓(k+ q)[G−1
↓ (k+ q)−G−1

↑ (k)+ t(k +q)− t(k)]G↑(k).
(25)

Using the following consequence of the Dyson equation:

t (k+q) − t (k) = G−1
↑ (k) −G−1

↓ (k + q)

+Σ↑ (E) −Σ↓ (E)

one can rewrite equation (25) in the form: δE = θ2

4 [J(0)−
J(q)] with the exchange integrals corresponding to equa-
tion (19). We conclude that the expression for Jij is accu-
rate if the vertex corrections can be neglected. Note that
the limit of small q this neglecting can be justified rigor-
ously, provided that the self-energy and three-leg scalar
vertex are local. This can be proven, e.g., using the Ward-
Takahashi identities [41]. Therefore, the expression for the
stiffness constant of the ferromagnet (Eq. (22)) appears to
be exact in the framework of DMFT [42].
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